Closed-form posterior Cramer-Rao bounds for bearings-only tracking

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed-form Posterior Cramér-rao Bound for Bearings-only Tracking Thomas Bréhard and Jean-pierre Le Cadre

We here address the classical bearings-only tracking problem (BOT) for a single object, which belongs to the general class of nonlinear filtering problems. Recently, algorithms based on sequential Monte Carlo methods (particle filtering) have been proposed. As far as performance analysis is concerned, the Posterior Cramér-Rao Bound (PCRB) provides a lower bound on the mean square error. Classic...

متن کامل

Posterior Cramer-Rao bounds for discrete-time nonlinear filtering

A mean-square error lower bound for the discretetime nonlinear filtering problem is derived based on the Van Trees (posterior) version of the Cramér–Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahe...

متن کامل

Note for Cramer-Rao Bounds

• (z)r and (z)i denote the real and imaginary part of z. II. CONSTRAINED CRAMER-RAO BOUND A. Problem Statement Problem statement and notation are based on [1]. • a: a K × 1 non-random vector which are to be estimated. • r: an observation of a random vector . • â (R): an estimate of a basing on the observed vector r . It is required that â (R) satisfies M nonlinear equality constraints (M < K), ...

متن کامل

Computing Constrained Cramer Rao Bounds

We revisit the problem of computing submatrices of the Cramér-Rao bound (CRB), which lower bounds the variance of any unbiased estimator of a vector parameter θ. We explore iterative methods that avoid direct inversion of the Fisher information matrix, which can be computationally expensive when the dimension of θ is large. The computation of the bound is related to the quadratic matrix program...

متن کامل

Cramer-Rao lower bounds for atomic decomposition

In a previous paper [1] we presented a method for atomic decomposition with chirped, Gabor functions based on maximum likelihood estimation. In this paper we present the Cramér-Rao lower bounds for estimating the seven chirp parameters, and the results of a simulation showing that our sub-optimal, but computationally tractable, estimators perform well in comparison to the bound at low signal-to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Aerospace and Electronic Systems

سال: 2006

ISSN: 0018-9251

DOI: 10.1109/taes.2006.314568